
MATH 245 S20, Exam 1 Solutions

1. Carefully define the following terms: even, floor, Double Negation Theorem.
We call integer n even if there exists an integer m with n = 2m. Let x ∈ R. We call integer a the floor
of x if a ≤ x < a + 1. The Double Negation Theorem states: Let p be a proposition. Then ¬¬p ≡ p.

2. Carefully define the following terms: Trivial Proof Theorem, Contrapositive Proof Theorem, converse
The Trivial Proof Theorem says that for propositions p, q, we have q ` p → q. The Contrapositive
Proof Theorem says that for propositions p, q, if ¬q ` ¬p is valid, then p→ q is true. The converse of
conditional proposition p→ q is q → p.

3. Let a, b, c be integers, with a|b and a|c. Prove that a|(b + c).

Because a|b, there exists some integer s with b = as. Because a|c, there exists some integer t with
c = at. Adding, we get b + c = as + at = a(s + t). Because s + t is an integer, a|(b + c).

4. Let m,n ∈ Z with m ≥ n ≥ 0. Prove that
(
m
n

)
=

(
m

m−n

)
.

We have
(
m
n

)
= m!

n!(m−n)! = m!
(m−n)!n! = m!

(m−n)!(m−(m−n))! =
(

m
m−n

)
.

5. Use truth tables to prove that ¬(p ∨ q) ≡ (¬p) ∧ (¬q).

The 4th and 7th columns agree in the truth table
at right.

p q p ∨ q ¬(p ∨ q) ¬p ¬q (¬p) ∧ (¬q)
T T T F F F F
T F T F F T F
F T T F T F F
F F F T T T T

6. Let x ∈ R. Prove that if 6 is irrational, then x is irrational.

6 is rational since 6 = 6
1 , and 6, 1 are both integers. Hence “6 is irrational” is false, so the implication

is vacuously true. (see Thm. 3.7b, if you’d like more details)

7. Prove or disprove: ∀x ∈ Z, x + 1 > x.

The statement is true. Let x ∈ Z be arbitrary.

Proof 1: Direct proof. Because (x + 1)− x = 1 ∈ N0, we know x + 1 ≥ x. But also x + 1 6= x. Hence
x + 1 > x (by definition of >).
Proof 2: Use a theorem. We know 1 > 0 by our entry point. We also know that x ≥ x since
x− x = 0 ∈ N0. We can combine using a theorem from the book (Thm 1.11) to get x+ 1 > x+ 0 = x.

8. Let p, q, r, s be propositions. Simplify (p→ q)→ (r → s) to use only ∨,∧,¬ where only basic propositions
are negated.

Step 1: Using Conditional Interpretation three times, our proposition is equivalent to (s∨¬r)∨¬(q∨¬p).
Step 2: Using De Morgan’s Law, this is equivalent to (s ∨ ¬r) ∨ ((¬q) ∧ (¬¬p)).
Step 3: Using Double Negation, this is equivalent to (s ∨ ¬r) ∨ ((¬q) ∧ p).

9. State Modus Ponens and prove it using other theorems (without truth tables).

Theorem: Let p, q be propositions. Then p, p→ q ` q.
Pf 1: We assume p, p → q. By conditional interpretation, q ∨ ¬p. By double negation, ¬¬p. By
disjunctive syllogism, q.
Pf 2: We assume p, p → q. We have p → q ≡ (¬q) → (¬p), its contrapositive. By double negation,
¬¬p. By modus tollens, ¬¬q. By double negation again, q.

10. Prove or disprove: ∀x ∈ R, ∃y ∈ R, ∃z ∈ R, y2 ≤ x2 < z2.

The statement is true. Let x ∈ R be arbitrary. Set y = x, z =
√
x2 + 1. We calculate y2 = x2, so

y2 ≤ x2. We also calculate z2 = (
√
x2 + 1)2 = x2 + 1 > x2. Hence y2 ≤ x2 < z2. Note: Other choices

of y, z are possible.


